Hot filament ion sources

FDG 15 & FDG 150

- From 5 keV down to 10 eV kinetic energy
- 30 300 mm working distance
- Spot size < 150 μm at 50 mm working distance
- Raster unit with keystone correction
- XPS depth profiling
- Low operating pressure of 10⁻⁸ mbar

FDG 15 Variable focus ion source

Apt. corrected real width: (165±7)μm

A dedicated ion focusing optics allows to reduce the spot size down to 300 μ m at 50 mm working distance for sputtering of small crystals and to adapt for large working distances up to 300 mm.

Alternatively a broad spot profile can be chosen for homogeneous large area sputtering.

The optional low energy mode provides a comparable large ion current of > 1 μ A at 50 eV.

It has been found that ion sputtering at low energies of semiconductors close to the threshold energy is critical to

nreshold energy is critical to minimise ion implantation and surface damage ¹⁾⁻⁴⁾.

Lower energy ion sputtering, at 50 eV, has been shown to even maintain the sample magnetisation during XPS depth profiling ⁵⁾.

The source can be operated with or without differential pumping. The latter provides improved residual gas pressure of typ. 10⁻⁸ mbar.

FDG 150 Fine Focus Scanning ion source

The power supply can be fully controlled with the front panel or via a TCP/IP interface. Prolon, an easy to use LabVIEW^M – based PC software is provided.

The FDG 150 in addition to FDG 15 provides a rasterized small spot down to less than 150 μ m at 50 mm working distance for depth profiling XPS/Auger incl. key stone correction, charge neutralization at low energies for ESCA applications and sensor cleaning in scanning probe microscopy.

a) Image of the argon ion spot scanned across a 50 μm aperture.

b) Cross section along the red line of a) showing a minimum spotsize at 5 keV and 1.6 μ A. Apt. corrected real width: **(76.4±0.4)** μ m

SPECIFICATIONS

	FDG 15 & power supply	FDG 150 & power supply
Mounting flange	DN 40 CF	
Working Distance (WD)	30 to 300 mm	
Min. beam diameter (D)	< 300 µm (at 5 keV and 50 mm WD)	< 150 μm (at 5 keV and 50 mm WD)
Beam energy range 1	500 eV to 5 keV > 15 μA (at 5 keV and 50 mm WD)	
Beam energy range 2	optional	10 eV to 500 eV; > 1 μA @ 50 eV
Beam current density	> 2 mA/cm² with > 5 μA, D < 400 μm (at 5 keV and 50 mm WD)	> 2 mA/cm² with > 5 μA, D < 300 μm (at 5 keV and 50 mm WD)
Scan area	not available	up to 10 mm x 10 mm (at 5 keV and 50 mm WD)
Beam current regulation	\checkmark	\checkmark
Integrated Port Aligner	\checkmark	\checkmark
Current measurement	\checkmark	\checkmark
TCP/IP Interface	\checkmark	\checkmark
LabVIEW based software	\checkmark	\checkmark
Fully non-magnetic	\checkmark	\checkmark
Yttria coated iridium filament (compatible with O₂)	\checkmark	\checkmark
Gases	Argon and other noble gases, Hydrogen and Oxygen	
Bake Out Temperature	Up to 180°C	
Tungsten filament (compatible with H₂)	optional	
Leak Valve	optional	

*Differential pumping improves the beam purity and saves significant time during outgasing and when changing gas flow to different values.

1) Chebotarev, S. N. et al. "Low-Energy Ion Technique for Semiconductor Surface Preparation."

Solid State Phenomena, doi:10.4028/www.scientific.net/ssp.284.198;

2) Dongwan Seo et. al. "Behavior of GaSb (100) and InSb (100) surfaces in the presence of H₂O₂ in acidic and basic cleaning solutions", doi.org/10.1016/j.apsusc.2016.12.114

3) Shiou-Min Wu et al. "Sputtering yields of Ru, Mo, and Si under low energy Ar+ bombardment", Journal of Applied Physics 106, 054902 (2009); doi: 10.1063/1.3149777

4) Hye Chung Shin et al. "Sputter damage in Si surface by low energy Ar+ ion bombardment", Current Applied Physics 3 (2003) 61–64

5) B. J. McMorran et al., Measuring the effects of low energy ion milling on the magnetization of Co/ Pd multilayers using scanning electron microscopy with polarization analysis. Appl. Phys. 107, 09D305 (2010);

https://doi.org/10.1063/1.3358218

For more information please vist www.focus-scientific.com or contact us! SPECS GmbH - BU FOCUS, D-65510 Huenstetten, Germany Tel.: +49(0)6126-4014-0, E-Mail: focus-sales@specs.com